The evolution of cooperation in self-interested agent societies: a critical study
نویسندگان
چکیده
We study the phenomenon of evolution of cooperation in a society of self-interested agents using repeated games in graphs. A repeated game in a graph is a multiple round game, where, in each round, an agent gains payoff by playing a game with its neighbors and updates its action (state) by using the actions and/or payoffs of its neighbors. The interaction model between the agents is a two-player, two-action (cooperate and defect) Prisoner’s Dilemma (PD) game (a prototypical model for interaction between self-interested agents). The conventional wisdom is that the presence of network structure enhances cooperation and current models use multiagent simulation to show evolution of cooperation. However, these results are based on particular combination of interaction game, network model and state update rules (e.g., PD game on a grid with imitate your best neighbor rule leads to evolution of cooperation). The state-of-theart lacks a comprehensive picture of the dependence of the emergence of cooperation on model parameters like network topology, interaction game, state update rules and initial fraction of cooperators. We perform a thorough study of the phenomenon of evolution of cooperation using (a) a set of popular categories of networks, namely, grid, random networks, scale-free networks, and small-world networks and (b) a set of cognitively motivated update rules. Our simulation results show that the evolution of cooperation in networked systems is quite nuanced and depends on the combination of network type, update rules and the initial fraction of cooperating agents. We also provide an analysis to support our simulation results.
منابع مشابه
Evolution of Self-interested Agents: An Experimental Study
In this paper, we perform an experimental study to examine the evolution of self-interested agents in cooperative agent societies. To this end, we realize a multiagent system in which agents initially behave altruistically by sharing information of food. After generations of a genetic algorithm, we observe the emergence of selfish agents who do not share food information. The experimental resul...
متن کاملThe Institutional Approach for Modeling the Evolution of Human Societies
Artificial life is concerned with understanding the dynamics of human societies. A defining feature of any society is its institutions. However, defining exactly what an institution is has proven difficult, with authors often talking past each other. This article presents a dynamic model of institutions, which views them as political game forms that generate the rules of a group's economic inte...
متن کاملAgent-based approach for cooperative scheduling
This paper studies the multi-factory production (MFP) network scheduling problem where a number of different individual factories join together to form a MFP network, in which these factories can operate more economically than operating individually. However, in such network which known as virtual production network with self-interested factories with transportation times, each individual facto...
متن کاملEvolutionary Agent-Based Modeling of Past Societies’
In this work, we extend a generic agent-based model for simulating ancient societies, by blending, for the first time, evolutionary game theory with multiagent systems’ self-organization. Our approach models the evolution of social behaviours in a population of strategically interacting agents corresponding to households in the early Minoan era. To this end, agents participate in repeated games...
متن کاملHigh strength-of-ties and low mobility enable the evolution of third-party punishment.
As punishment can be essential to cooperation and norm maintenance but costly to the punisher, many evolutionary game-theoretic studies have explored how direct punishment can evolve in populations. Compared to direct punishment, in which an agent acts to punish another for an interaction in which both parties were involved, the evolution of third-party punishment (3PP) is even more puzzling, b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011